Introduction and Functions

Math 131, Section 501

January 17, 2017

Math 131, Section 501

Introduction and Functions

∃ → (∃ → January 17, 2017

< **A** → <

э

Introduction

Paul Gustafson

4th year PhD student

Topological phases of matter

Functional programming

3

Motivation for the course

Critical thinking skills

Attention to detail

Mathematical maturity

Work ethic

Signalling

э

Course information

Course webpage: http://math.tamu.edu/~pgustafs/math131

Office hours: 2:00-3:00 PM Mon, 11:00-12:30 AM Thurs

Exam dates: Feb 16, Mar 23, Apr 20, May 4

Lowest exam grade

Take-home quizzes (to be worked alone, must turn them in yourself!)

Book and Webassign

Stewart Calculus 4.0

Hard copy or ebook

Must pay for webassign

Hard copy purchase includes webassign Can just buy webassign/ebook 2 week free trial

э

Teaching Philosopy

Respect

I'm here to help you

No such thing as a stupid question

Math 131, Section 501

Introduction and Functions

January 17, 2017 6 / 26

э

< 17 ▶

Functions

Definition

A function f is a rule that assigns to each element in a set D exactly one element, called f(x) in a set E.

э

Ways to define a function

Words

A table

An algebraic rule (usual method)

A graph

Math 131, Section 501

Introduction and Functions

→ ∃ → January 17, 2017 8 / 26

< 🗗 🕨

э

Give an algebraic rule for the following function

A man runs a 10 mile race along a river bank. He runs the first x miles, then swims the rest. He runs 7 mph and swims 2 mph. Write an equation describing the time it takes him to finish the race in terms of x.

Give an algebraic rule for the following function

An open shoe box is twice as long as it is wide and has a volume of 20 square inches. Write down the equation for the surface area of the box in terms of its width x.

Vertical line test

Vertical line test

A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

Vertical line test examples

イロン 不聞と 不同と 不同と Math 131, Section 501 Introduction and Functions

12 / 26 January 17, 2017

3

Applying functions

Let
$$f(x) = \frac{x^2 + 1}{x + 3}$$
.

f(a)

f(2z - 1)

$$f(g(x))$$
 where $g(x) = x^2 - 1$

Math 131, Section 501

January 17, 2017

Ξ.

13 / 26

イロト イポト イヨト イヨト

Domain and range

Definition

The **domain** of f is the set of values x for which f(x) is defined.

Definition

The **range** of f is the set of all possible values f(x).

Name	Age
Alice	20
Bob	19
Charles	24
Katie	22

3

Finding the domain of a function

Rules:

- Cannot divide by 0
- Cannot take even roots of negative numbers

Cannot take logarithms of numbers ≤ 0

э

Finding the range of a function

Graph it!

$$f(x) = x^2$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

3

16 / 26

イロト イポト イヨト イヨト

Find the domain and range

$$f(x) = \sqrt{1-x^2}$$

$$f(x) = \frac{x^2(x+1)}{(x-4)^2}$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

3

17 / 26

イロン 不聞と 不同と 不同と

Find the domain and range

$$f(x) = x^{2/3}$$

$$f(x) = 1 - \ln(x^2 + 1)$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

3

18 / 26

イロン 不聞と 不同と 不同と

Even and odd functions

Definition

A function f is even if f(-x) = f(x) for all x.

The graph of an even function is symmetric about the y-axis.

Definition

A function f is **odd** if
$$f(-x) = -f(-x)$$
 for all x.

The graph of an odd function is symmetric about the origin.

3

Is the function even, odd, or neither?

$$f(x) = x$$

$$f(x) = x^3 + 1$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

20 / 26

3

Is the function even, odd, or neither?

$$f(x) = |x| + x^4$$

$$f(x) = \sqrt{x}$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

3

21 / 26

イロト イポト イヨト イヨト

Piecewise functions

Definition

A **piecewise function** is a function that has different rules for different parts of its domain.

Example

$$|x| = \begin{cases} x, & x \ge 0\\ -x, & x < 0 \end{cases}$$

э

Piecewise functions

Example

$$f(x) = \begin{cases} x, & x < -1 \\ x^2, & -1 \le x < 2 \\ 4, & x \ge 2 \end{cases}$$

January 17, 2017

∃ 990

23 / 26

イロン 不聞と 不同と 不同と

Increasing and decreasing functions

Definition

A function f is **increasing** if f(x) increases as x increases.

A line with positive slope is increasing.

Definition

A function f is **decreasing** if f(x) decreases as x increases.

A line with negative slope is decreasing.

Find the intervals on which the function is increasing or decreasing.

$$f(x) = -2x + 1$$

$$f(x) = 3$$

$$f(x) = x^3$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

< 行い

3. 3

Find the intervals on which the function is increasing or decreasing.

$$f(x) = x^2$$

$$f(x) = e^{1-x}$$

Math 131, Section 501

Introduction and Functions

January 17, 2017

< 行い

3. 3